Design and Control of an EMG Driven IPMC Based Artificial Muscle Finger

نویسندگان

  • R. K. Jain
  • S. Datta
  • S. Majumder
چکیده

The medical, rehabilitation and bio-mimetic technology demands human actuated devices which can support in the daily life activities such as functional assistance or functional substitution of human organs. These devices can be used in the form of prosthetic, skeletal and artificial muscles devices (Andreasen et al., 2005; Bitzer & Smagt, 2006; DoNascimento et al., 2008). However, we still have some difficulties in the practical use of these devices. The major challenges to overcome are the acquisition of the user’s intention from his or her bionic signals and to provide with an appropriate control signal for the device. Also, we need to consider the mechanical design issues such as lightweight and small size with flexible behavior etc (Arieta et al., 2006; Shenoy et al., 2008). For the bionic signals, the electromyography (EMG) signal can be used to control these devices, which reflect the muscles motion, and can be acquired from the body surface. We are familiar with the fact that ionic polymer metal composite (IPMC) has tremendous potential as an artificial muscle. This can be stimulated by supplying a small voltage of ±3V and shows evidence of a large bending behavior (Shahinpoor & Kim, 2001; 2002; 2004; Bar-Cohen, 2002). In place of the supply voltage from external source for actuating an IPMC, EMG signal can be used where EMG electrodes show a reliable approach to extract voltage signal from body (Jain et al. 2010a; 2010b; 2011). Using this voltage signal via EMG sensor, IPMC can illustrate the biomimetic behavior through the movement of human muscles. Therefore, an IPMC is used as an artificial muscle finger for the bio-mimetic/micro robot.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Implementation OF Prosthetic Index Finger Based On EMG Signals

The main goal of this paper is to provide an integrated design of the artificial index finger and to present the result of human like behavior. The big advantages of the prosthetic index finger are their incredible small size, volume and weight, their low cost .This paper describes our implementation of one finger of a future biomechatronic hand and remote control .This index finger captures th...

متن کامل

EMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols

BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...

متن کامل

Optimization of fuzzy controller for an SMA-actuated artificial finger robot

The purpose of this paper is to design and optimize an intelligent fuzzy-logic controller for a three-degree of freedom (3DOF) artificial finger with shape-memory alloy (SMA) wire actuators. The robotic finger is constructed using three SMA wires as tendons to bend each phalanx of the finger around its revolute joint and three torsion springs which return the phalanxes to their original positio...

متن کامل

Mechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.

One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...

متن کامل

A review on robotic fish enabled by ionic polymer–metal composite artificial muscles

A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012